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BIOL 422 & 680, Pedro Peres-Neto, Biology, Concordia University 

ANOVA, Regression and types of sum-of-squares (version 2022) 

The General Linear Model (not to be confused with generalized linear models) includes a 

multitude of statistical models (all linear) such as t-test, ANOVA (analysis of variance), regression 

(simple and multiple), ANCOVA (analysis of covariance) and any other (linear) approach based on 

normality, homoscedastic and sample independence assumptions.  The goal of all these analyses is 

to model (linearly) the variation of a response variable (or multiple response variables) against a 

predictor variable (or a set of multiple predictors).  The response (dependent) variable is always 

continuous and the predictors can be categorical (e.g., t-test, ANOVA for comparing group means), 

continuous (e.g., regression) and a mix of both (e.g., multiple regression, ANCOVA). The goal of 

general linear models is to model the variation in the response variable as a function of the predictor 

variables.   Note that transformations (e.g., rank) and other approaches to deal with non-normality, 

homoscedasticity (e.g., weighted least squares; mixed-models) and sampling independency (e.g., 

generalized least squares) can be performed in all analyses under the family of general linear models. 

The General Linear Model analyzes (models) the total variation in the response variable by 

splitting it into two general components (or sources of variation): (1) systematic variation that is 

explained by the predictor(s); and (2) residual variation that is not explained by the predictors.  

The F-statistic is calculated as the ratio between the systematic variation and the residual variation.  

Depending on the type of analysis (e.g., ANOVA for contrasting group means and ANOVA for 

regression), the systematic and residual components will be calculated in different ways.  Note, 

however, that they both represent the same types of variation (i.e., systematic = explained by 

predictors & residual = non-explained by residuals).  Note each type of variation is corrected by 

their own degrees of freedom.  Remember that the F-statistic has two types of degrees of freedom.  

If the F statistic is large (for a given set of degrees of freedom), then the systematic (explained) 

variation is large in contrast to the residuals (unexplained) variation.  Two relevant questions arise 

here.  The first one is whether the variation explained by the systematic variation is significantly 

greater than the residual variation; the second question is what is the percentage of the total 
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variation in the response variable explained by the systematic variation.  The second question is 

often asked in regression analysis but not in ANOVAs and ANCOVAs (a mistake in my mind). 

ANOVA. In the case of ANOVA for comparing means among groups, the systematic 

variation is commonly referred “variation between groups” and the residual variation as “variation 

within groups” (groups here refer to groups of individuals).  The term “variation between groups” 

in ANOVA is used because the categorical predictors serve to separate variation among groups in 

terms of their mean values (i.e., how much group means vary among each other).  Sometimes, in 

ANOVA, the residual variation is also referred as to random variation.  This reference is due to the 

fact that ANOVA is often used in experiments where it is assumed that the variation within groups 

(i.e., not the result of the experimental factors imposed to the groups) is due to random chance.   

Regression. In the case of regression, the goal is to model the variation in the response 

variable as a function of the variation of the predictors.  The systematic variation in regression is 

commonly referred as “regression variation” and the residual variation as “residual error”.   

Summarizing, the total variation in ANOVA is divided into between and within components; 

and in regression the total variation is divided into regression and residual.  This variation is often 

graphically expressed in one of the two forms: 

 

The total variation in the response variable as well as the systematic and residual sources of 

variation are based on sum of squares (by the way, we often hyphenate it as sum-of-squares) that 

vary according to the analysis (e.g., ANOVA comparing means versus regression). Moreover, as we 

will see below, there are different types of sum-of-squares even for the same type of analysis (e.g., 

ANOVAs). This issue is not well covered in standard Introduction-level books on Biostatistics but 
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they need to be covered in advanced levels.  Let’s start by the total variation in the response variable 

Y in both ANOVA and regression is simply: 

TSS = 	%(Y! 	− 	Y))"
#

$%&

 

where1 TTS is the total sum of squares of a variable Y, n is the number of observations in Y and Y" 
is the average of Y [ 1 when explaining terms in an equation, the proper “mathematical etiquette” is 

that we start without a paragraph space with “where” in lower caps].  TTS is then divided 

(corrected) by its appropriate degrees of freedom (n – 1) given that we are subtracting each 

observation by the mean. Without correcting for the appropriate degrees of freedom, the sample-

based TTS is a biased estimate of the true population TTS (this issue was covered in our lecture 

about degrees of freedom and variance estimation; remember that TTS is the numerator of the 

variance estimator).  TTS/(n-1) becomes the total mean sum-of-squares (acronym is MST).  So, 

MST is simply the variance of Y. Although the sum-of-squares will change for the systematic 

component(s) across different types of analyses (e.g., ANOVA contrasting means versus regression), 

they are the same for the total sum-of-squares (presented above) and residuals (not presented here). 

However, for each type of analysis, the systematic component(s) is based on appropriate sum-of-

squares and their divisions (correction) by the appropriate degrees of freedom.  Note that the 

systematic sum-of-squares plus the residual sum-of-squares equals the total sum-of-squares for 

almost all types of analyses (exceptions are very intricate analytical tools not covered in this course).   

The systematic source of variation can be further divided into the relative importance of 

each predictor (different factors in ANOVA or different predictors in regression). Let’s consider first 

the case of ANOVA. In the case of one-way ANOVA, there is only one factor but multiple predictors 

when we have more than two groups (see lecture on contrasts). In this case, the systematic variation 

of interest is the total variation across all contrasts (predictors) of the single factor (i.e., one-way 

ANOVA; represented by the first figure above).   

Let’s move on to a two-way factorial ANOVA with two factors A and B, and their 

interaction AB.  In this case we have four sources of variation. Three sources are systematic (A, B 

and AB) and the fourth is the residual variation. In the standard way to compute the appropriate 
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sources of variation in an ANOVA, the design is assumed balanced (i.e., there is an equal number 

of observations for all possible combinations of levels).  Consider the Sandberg et al. (2000) study 

on gene expression.  Their study represents a balanced design because for each factor and associated 

levels (factor mice strain: 2 strains; factor brain region: 6 regions) they have exactly two 

observations.  If one single out of any two observations for any combination of levels (e.g., the 

hippocampus of strain 129SvEv) would be missing, the design would be unbalanced. Note that the 

issues of balanced versus unbalanced design obviously only affects multi-factorial ANOVA designs 

and not one-way or single-factorial ANOVA designs).  Let’s consider first the case of a balanced 

design.  In this case, all the contrasts (predictors) required to model the systematic variation would 

be fully orthogonal, i.e., the correlation between them would be zero.  In this case, we can represent 

the variation as below.  The circle representation of the variation due to the different components 

of is done via a Venn diagram.  Either representation is often used in regression analysis. 

 

 

We can note a few things:  1) The total systematic variation is the variation of (A) + (B) 

+ (AB); 2) That the overlap between each factor and their interaction is independent (i.e., 
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orthogonal and as such, the circles and rectangles do not overlap).  Because they are orthogonal, we 

say that they do not share any systematic variation regarding their contributions to the total 

variation in the response variable Y.  A few additional (and somewhat relevant remarks) – even 

though a particular factor may not be statistically significant, we don’t transform its contribution 

into zero (e.g., the contribution can be small and test lack statistical power to detect it).  Finally, 

because these components are based on additive sum-of-squares (i.e., total sum-of-squares equals 

the systematic sum-of-squares + the residual sum-of-squares), each component can be translated 

(and often is) into a percentage of variation, which becomes a more comparable metric instead of 

the original values expressed as variance components.  We will see this later in our module on 

multiple regressions.    

Now, when designs are not balanced, we have an issue with the traditional way used to 

calculate systematic variation (i.e., the one assuming orthogonal designs).  In this case, we say that 

the factors are “not fully orthogonal”, i.e., they correlate and as such it would not be mathematically 

possible to estimate the independent variation of any factor and their interactions by using the 

calculation of sum-of-squares based on a balanced design.  In this case, the circles (or rectangles) in 

the representation above would share some variation.   

This is a very important notion that becomes even more relevant in regression analysis, 

particularly model selection, because unlike categorical predictors, continuous predictors are almost 

never uncorrelated (unless by design or mathematically built that way, e.g., principal component 

regression).  One important note here.  This discussion of sum-of-squares is often not done in 

regression because the ANOVA model applied to regression is simply based on the sum-of-squares 

of all combined systematic component (i.e., all regression predictors together) and not each 

systematic component separately, unless in some important steps such as model selection.  We will 

go through this also in our multiple regression module.   

Now we need to understand the consequences of calculating sum-of-squares for the relative 

contributions of each factor and interaction assuming a balanced ANOVA design for data that are 

not balanced, i.e., when the contribution of different factors and their interactions are not 

orthogonal.  The name of the sum-of-squares for balanced ANOVA design is “Type I sum-of-squares” 
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(or simply Type I SS).  Worth noting (again) is that neither the residual sum-of-squares or the total 

sum-of-squares are affected by the order or the total contribution of systematic errors in balanced 

and non-balanced standard ANOVA designs.  Only the relative contributions of the systematic 

components (factors and interactions) are affected by unbalanced designs.  The issue with using 

Type I SS for unbalanced designs (i.e., when factors or predictors are not orthogonal) is that the 

order of entrance of factors (or predictors) influences the calculation.  For this reason, the Type I 

SS is known also as “sequential” sum-of-squares.  Let’s consider a small example.  For simplicity, 

we will only consider the effects of two factors A and B, but not their interactions.  The reason is 

that it would be tricky to do that graphically without explaining a lot of little additional details.  

But I’ll explain this decision once you get the simple example; hopefully you’ll easily understand 

the issue of complexity graphically.  Also, instead of using absolute values for the sum-of-squares, 

we will use relative contributions (%) as discussed earlier.  In this case, the total sum-of-squares 

becomes 100%.   

The next figure shows a contrast between the situation in which factor A is entered first in 

the ANOVA and then factor B, and the reverse situation (factor B entered first and then A).  Let’s 

say that when entering factor A first, it explains 15% of the total variation in Y (out of 100%).  

Factor B explains alone 17%, but when entered in the model, parts of this 17% overlaps with A (say 

3%) because factors A and B are not orthogonal (i.e., they share variation in common that explains 

part of the variation in Y).  In type I SS, the overlap fraction is kept as contribution of factor A.  

So, factor A remains at 15% and factor B contributes with 14% (17% - 3%).  Now, let’s consider 

the case where factor B enters first.  In this case, factor B’s contribution is kept at 17%.  Then, 

factor A is entered in the model, but this time, the shared variation due to lack of orthogonality is 

kept with factor B.  As such, factor A’s contribution is 12% (i.e., 15% - 3%).  Now you understand 

why the order of entrance changes the calculation of sum-of-squares of each factor (remember that 

the percentage of contribution is directly proportional to the sum-of-squares of each factor).  It is 

also easier to understand why we call Type SS as “sequential”.  Note that in both cases, the residual 

variation left unaccounted for (unexplained) is 71% regardless of which factor (A or B) entered first 

in the model.  Remember that we did not consider the interaction because the interaction in non-

balanced designs will have overlapping fractions of their sum-of-squares with both A and B, making 
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it difficult to represent into rectangles.  Venn diagrams facilitate expressing shared fractions among 

3 factors, but not easily in terms of ordering entrance.  As such, we kept it simple with just two 

factors.  Using the Type I SS (below), the contributions of factors A and B are different depending 

on the order in which they are entered into the analysis (model).   

 

 

    

Now let’s consider a sum-of-squares for each factor is kept the same regardless of their order 

of entrance in the model. This type of sum-of-squares is called Type III SS (or marginal or 

orthogonal).  We won’t cover types II and IV sum-of-squares for the moment. The figure below 

shows what happens when we use Type III SS. In this way of calculating sum-of-squares, the shared 

fraction is not included in any of the factor’s contribution.  This lowers the sum-of-squares of all 

factors, but it keeps them consistent regardless of the entrance in the model.  As such, the 

contributions are marginal (or orthogonal) to one another. 

Using the Type III SS (below), the contributions of factors A and B are equal regardless of 

the order in which they are entered into the analysis (model).   
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As such, we should use the type III SS for unbalanced designs.  
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